办 公 室: 第一教学楼 625
联系电话: 022-88181071
邮 箱: xhwang199@outlook.com
研究方向:
计算电磁学,具体包括改进和发展时域有限差分(FDTD)及有限元(FEM)算法并应用于快速仿真分析复杂电磁环境、新型电磁材料及器件、电磁兼容和干扰等问题。
个人履历
2013.11–今 天津职业技术师范大学理学院 副教授
2018.08-2019.08 美国俄亥俄州立大学电子科学实验室 访问学者
2011.09-2015.03 浙江大学光及电磁波研究中心 博士
2007.11-2013.10 天津职业技术师范大学理学院 讲师
2005.06-2007.10 天津职业技术师范大学理学院 助教
2002.09-2005.05 中国科学院上海天文台天体物理研究室 硕士
1998.09-2002.07 内蒙古大学物理系数理学基地班 学士
教学工作
本科生课程:计算物理、计算物理课程设计、大学物理、大学物理实验
科研项目
2021 -2023 北京航空航天大学横向课题
基于面中心网格(FCC)的低色散高阶FDTD方法及其在瞬态强场电磁兼容问题中的应用 主持
2020 – 2022 北京航空航天大学横向课题
复杂电磁结构建模与算法关键技术研究 主持
2020 – 2021 国防预研项目(联合申请)
动态海面及超低空运载平台下强电磁脉冲传播特性与预测方法 参加
2017 – 2020 校自然基金
舰船平台等复杂电磁结构时域快速仿真 主持
2014 - 2017 校自然基金
石墨烯光电子器件高效数值仿真算法与应用研究 主持
2015 - 2019 国家自然基金重点项目
电磁波激励条件下多尺度异质功能结构中多物理过程耦合建模与高效算法研究 参加
2014 - 2018 国家自然基金面上项目
毫米波介质谐振器有源天线研究 参加
2007 - 2008 国家自然基金面上项目
奇特原子核电子散射的理论研究 参加
2012 - 2015 天津市自然基金面上项目
毫米波有源天线阵列理论与数值仿真研究 参加
2007 - 2009 校自然基金
类星体吸收线及高速云谱线的模拟观测 主持
2007 - 2009 教育部科学研究重点项目
毫米波介质谐振器天线技术研究 参加
论文成果(部分列出)
[1]Hanhong Liu, Xiaoying Zhao,Xiang-HuaWang, Shunchuan Yang, and Zhizhang Chen, “An Unconditionally Stable Conformal LOD-FDTD Method for Curved PEC Objects and its Application to EMC Problems,” IEEE Transactions on Electromagnetic Compatibility, Early Access,Jan 1, 2022.
[2]Yu Cheng, Guangzhi Chen,Xiang-HuaWang, and Shunchuan Yang, “Investigation of numerical dispersion with time step of the FDTD methods: avoiding erroneous conclusions,” IET Microw.Antennas Propag. vol. 15, no. 7, pp. 691-703, 2021.
[3]Hanhong Liu,Xiang-hua Wang,Xingqi Zhang, Shunchuan Yang, Zhizhang (David) Chen, “Three-Dimensional Conformal LOD-FDTD Method for Accurate Transisent,” 2021 International Applied Computational Electromagnetics Society Symposium - China (ACES),Chengdu, China, pp. 1-2, 2021.
[4]Xiang-Hua Wangand Jian-Yun Gao,“Investigate Magnetized Graphene-based FSS with Split Field HIE-FDTD Method,”2021 International Applied Computational Electromagnetics Society Symposium -China (ACES), Chengdu, China, pp. 1-2, 2021.
[5]Xiang-HuaWangand Jian-Yun Gao,“Stability-Improved HIE-FDTD for Magnetized Graphene from Microwave to THz Band”, IEEE MTTS-NEMO2020, pp. 1-4, 2020.
[6]Xiang-Hua Wang, Jian-Yun Gao, Zhizhang Chen, and Fernando L. Teixeira, “Unconditionally Stable One-Step Leapfrog ADI-FDTD for Dispersive Media,” IEEE Transactions on Antennas and Propagation,no. 4, vol. 67, pp. 2829-2834, 2019.
[7]Xiang-Hua Wang, Jian-Yun Gao, Fernando L.Teixeira, “One-Step Leapfrog HIE-FDTD for Drude Media,” IEEE Microwave and Wireless Components Letters, no. 2, vol. 29, pp. 77-79, 2019.
[8]Xiang-Hua Wang, Jian-Yun Gao, Fernando L.Teixeira, “Stability-Improved ADE-FDTD Method for Wideband Modeling of Graphene Structures,” IEEE Antennas and Wireless Propagation Letters, no. 1,vol. 18, pp. 212-216, 2019.
[9]Xiang-Hua Wang, Jian-Yun Gao, Fernando L.Teixeira, “Unconditionally stable LOD-FDTD for modeling transmission properties of magnetized graphene sheet,” Optics Communications, vol. 442,pp. 90-94, 2019.
[10]Jian-Yun Gao,Xiang-Hua Wang,and Fernando L. Teixeira, “One-step leapfrog WCS-FDTD for drude dispersive models,” Electronics Letters, no. 4, vol. 55, pp. 172-174, 2019.
[11]Jian-Yun Gao, Xiang-Hua Wang, and Fernando L. Teixeira, “Extended ADI-FDTD for anisotropic magnetised graphene sheets,” Electronics Letters, no. 15, vol. 55, pp. 833-835, 2019.
[12]X. H. Wang,J. Y. Gao, and H. X. Zheng,“LOD-FDTD Method for Broadband Simulation of Graphene Structures,” IEEE ICCEM International, pp. 29-30, Feb. 2016.
[13]X. H. Wang, W. Y. Yin, and Z. Chen,“Implementation of CPML for one-step Leapfrog WCS-FDTD method,” IEEE Microw.Wireless Compon. Lett., vol. 25, no. 8, pp. 496-498, Aug. 2015.
[14]X. H. Wang, W. Y. Yin, and Z. Chen, “Broadband modeling surface plasmon polaritons in optically pumped and curved graphene structures with an improved Leapfrog ADI-FDTD method,” Optics Communications., vol.334, pp. 152-155, 2015.
[15]X. H. Wang, Y. Guo, J. Hu, and W. Y. Yin,“Efficient ADE-FDTD method for modelling graphene-based structures,” IEEE IMWS-AMP International, pp.1-3, Jul. 2015.
[16]X. H. Wang, J. Hu, W. Y. Yin, and Z. Chen, “Study on tunable periodic graphene split-ring resonator (GSRR) structures using FDTD method,” IEEE MTT-S NEMO International, pp. 1-3, Aug. 2015.
[17]X. H. Wang, W. Y. Yin, and Z. Chen, “One-step Leapfrog ADI-FDTD with CPML for general orthogonal grids,” IEEE Antennas Wireless Propag. Lett., vol.13, pp. 1644-1647, Aug. 2014.
[18]X. H. Wang, W. Y. Yin, and Y. Guo, “Leapfrog ADI-FDTD for studying on 3-D graphene frequency selective surface (GFSS)structure,” IEEE FEM2014, 2014.
[19]X. H. Wang, W. Y. Yin, and Z. Chen, “On the source implementation for the Leapfrog ADI-FDTD method,” IEEE Microw.Wireless Compon. Lett., vol. 23, no. 1, pp. 1-3, Jan. 2013.
[20]X. H. Wang, W. Y. Yin, and Z. Chen, “One-step Leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media,” Optics Express, vol. 21, no. 18, pp. 20565-20576,Sep. 2013.
[21]X. H. Wang, W. Y. Yin, and Z. Chen, “Matrix exponential FDTD modeling of magnetized graphene sheet,” IEEE Antennas Wireless Propag.Lett., vol.12, pp. 1129-1132, Sep. 2013.
[22]X. H. Wang, J. Jin, Y. Guo, and W. Y. Yin,“Numerical dispersion optimized Leapfrog ADI-FDTD method and its application for capturing surface current distributions of complex objects illuminated by an electromagnetic pulse (EMP),” IEEE EMCS International, pp. 514-517, Aug.2013.
[23]X. H. Wang, W. Y. Yin, Y. Q. Yu, Z. Chen, J.Wang, and Y. Guo, “A convolutional perfect matched layer (CPML) for one-step Leapfrog ADI-FDTD method and its applications to EMC problems,” IEEE Trans.Electromagn. Compat., vol. 54, no. 5, pp. 1066-1076, Oct. 2012.
[24]X. H. Wang, W. Y. Yin, Z. Chen, and S. C. Yang,“One-step Leapfrog ADI-FDTD method including lumped elements and its stability analysis,” IEEE Antennas Wireless Propag. Lett., vol. 11, no. 12,pp. 1406-1408, 2012.
[25]X. H. Wang, W. Y. Yin, and Z. Chen, “One-step Leapfrog ADI-FDTD method for anisotropic magnetized plasma,” IEEE MTT-S International, pp. 1-4, Jun. 2013.
[26]X. H. Wang, W. Y. Yin, and J. Wang, “An improved Leapfrog ADI-FDTD method for computing surface current distributions of complex structures in the presence of an intentional electromagnetic pulse (IEMP),”IEEE EMCS International, pp. 385-389, Aug. 2012.
[27]X. H. Wangand H. X. Zheng, “Using discrete fourier transformation to obtain the complex amplitude of time-harmonic field in FDTD,” IEEE ICMTCE, pp.438-440, Jun. 2011.
[28]J. Y. Gao andX. H. Wang,“One-step Leapfrog WCS-FDTD Method for Lossy Media”, IEEE ICCEM International, pp. 1-3, Feb. 2016.
[29]X. Yuan, W. Y. Yin,X. H. Wang,J. Hu, and Y. Guo, “Optimized conformal FDTD (2, 4) method for calculatingreflected and diffracted electromagnetic fields of perfectly conducting wedges,” IEEE Trans. Electromagn. Compat., vol. 56, no. 2, pp. 466-474, 2014.
[30]Y. Guo,X. H. Wang, and J. Hu,“A new parallel meshing technique integrated into the conformal FDTD method for solving complex electromagnetic problems,” Journal of Zhejiang University-SCIENCE C-Computers & Electronics., vol. 15, no. 12, pp.1087-1097, 2014.
[31]M. L. Zhai, H. L. Peng,X. H. Wang,X. Wang, Z. Chen, and W. Y. Yin, “The conformal HIE-FDTD method for simulating tunable graphene-based couplers for Terahertz (THz) applications,”IEEE Trans. THz Sci. Technol., vol. 5, no. 3, pp. 368-376, May. 2015.
[32]Y. Guo, T. Zhang, W. Y. Yin, andX.H. Wang, “Improved hybrid FDTD method for studying on tunable graphenefrequency selective surfaces (GFSS) for THz wave applications,” IEEE Trans.THz Sci. Technol., vol. 5, no. 3, pp. 358-67, May. 2015.
[33]J. Y. Gao,X. H. Wang, and H. X.Zheng, “One-step Leapfrog HIE-FDTD method for lossy media”, Progress In Electromagnetics Research Letters, vol. 54, pp. 21-26, 2015.
[34]M. L. Zhai, Z. Chen, W. Y. Yin,X.H. Wang, and J. Wang, “Implementation of perfectly matched layer (PML)for the WCS-FDTD method using DSP techniques,” IEEE Antennas Wireless Propag.Lett., vol. 13, pp. 479-482, 2014.
[35]M. L. Zhai, Z. Chen, W. Y. Yin, H. Nie,andX. H. Wang, “Modeling of ultra-wideband indoor channels with the modified Leapfrog ADI-FDTD method,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields., pp. 50-64, vo. 28, no.1, 2014.
[36]Y. Guo,X. H. Wang, J. Hu, L. D.Wang, and W. Y. Yin, “A new SIMD-based FDTD meshing algorithm used for FDTD simulation of aircraft platform,” IEEE AP-S International, pp. 348-349, 2015.
[37]Y. Guo,X. H. Wang, and W. Y.Yin, “Novel parallel meshing technique implemented into parallel FDTD simulation using function language for solving electrically large and complex EMC problems,” IEEE EMC-S International, pp. 522-527, 2013.
[38]T. Zhang,X. H. Wang, Y. Guo,and W. Y. Yin, “Improved FDTD simulation for predicting transmission characteristics of graphene and solid plasma composite with a biased magnetic field,” IEEE MTT-S International, pp. 1-4, 2013.
[39]X. Yuan,X. H. Wang, and W. Y.Yin, “Enhanced conformal FDTD method for predicting transient responses of arbitrary PEC wedges illuminated by an electromagnetic pulse,” IEEE EMC-S International, pp. 509-512, 2013.
[40]T. Zhang,X. H. Wang, Y. Guo,and W. Y. Yin, “Improved FDTD method or studying on graphene frequency selective surface (GFSS) characteristics for nanoelectromagnetics applications,” IEEE EMC-S International, pp. 376-379, 2013.
[41]X. Yuan,X. H. Wang, J. Hu, and W. Y. Yin, “Hybrid FDTD method based on conformal technique for modeling wedges composed of conductive and dielectric materials,” IEEE EUEMC-S International, pp. 207-210, 2014.
[42]M. L. Zhai, Z. Chen, W. Y. Yin, andX.H. Wang, “Convolution perfectly matched layer (CPML) implementation of the WCS-FDTD method for graphene applications,” IEEE EUEMC-S International,pp. 478-481, 2014.
[43]郭旸,王向华,胡骏.共形FDTD网格剖分方法及其在舰船电磁环境效应仿真中的应用[J].中国舰船研究,2015, 10(2):29-34.
[44]郭旸,王向华,胡骏.基于函数语言的并行FDTD算法新实现及其在航空母舰甲板表面电磁场分布问题仿真中的应用[J].中国舰船研究,2015, 10(2):35-39.