办 公 室: A626
邮 箱:weila319@163.com
研究方向:
微分方程与动力系统、非线性泛函分析
教育背景:
2015.06 南开大学数学学院获博士学位
工作经历:
2015.07 –至今 天津职业技术师范大学 讲师
教学工作:
本科生课程:常微分方程、高等数学、线性代数
科研项目:
2017–2020 天津市教委科研计划项目 薛定谔-泊松系统的解的定性研究 主持
2018 -2021 天津市自然科学基金项目 基于机器学习的砂体含油及连通性分析预测研究 参与
2017 -2022 天津市教委科研计划项目 黏弹性波场数值模拟及其CPU/GPU异构计算 参与
论文成果:
[1] Xu, Na, Shiwang Ma, and Rong Xing. Existence and asymptotic behavior of vector solutions for linearly coupled Choquard-type systems. Applied Mathematics Letters. 104(2020): 106249.
[2] Xu, Na, and Ruijun Yang. Multiple solutions for Kirchhoff type problem. 3rd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2023),vol. 12756, pp. 1042-1047. SPIE, 2023.
[3] Xu, Na. The existence of ground state solutions for a class of sublinear Kirhhoff equations. Chinese Quarterly Journal of Mathematics. 2023,38(04)
[4] Xu, Na. Research on Online Teaching Mode of Linear Algebra Course. 2023 4th International Conference on Big Data and Informatization Education, pp. 333-337. Atlantis Press, 2023.
[5] Lixia, Wang, Shiwang Ma, and Na Xu. Multiple solutions for nonhomogeneous Schrödinger-Poisson equations with sign-changing potential. Acta Mathematica Scientia 37.2 (2017): 555-572.
[6] XU, Na. Ground State Solutions for Schrodinger-Poisson Systems. Chinese Quarterly Journal of Mathematics 31, no. 1 (2016): 9.
[7] Xu, Na, and Ruijun Yang. Ground state solutions for sublinear Schrödinger-Poisson systems. Fourth International Conference on Applied Mathematics, Modelling, and Intelligent Computing. Vol. 13219. SPIE,2024.